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Max-Planck-Institut fur Kemphysik and Institut fur Theoretische Physik der Universitat 
Heidelberg, West Germany 

Received 2 January 1985 

Abstract. We study numerically the classical dynamical behaviour, and the spectral fluctu- 
ation properties, of a class of Hamiltonian systems with two degrees of freedom. The 
quantum mechanical properties of these systems are monotonic but non-universal functions 
of the fraction of classical phase space filled by chaotic trajectories. It is found that the 
observed spectral fluctuation measures can be reproduced by a random-matrix model which 
depends on one parameter only. 

1. Introduction 

Classical nonlinear dynamics is a fast-growing field of current research, and consider- 
able progress has been made in our understanding of the chaotic behaviour of maps, 
billiards, and other nonlinear systems. So far, dissipative systems have received most 
of the attention, possibly because they exhibit such intriguing phenomena as strange 
attractors, which do not occur in the absence of dissipation. There exists, however, a 
long-standing interest in conservative (or Hamiltonian) systems, too. This interest was 
further stimulated by the recent inquiry into manifestations of classical chaotic motion 
in quantum mechanics. It is by now well understood that Hamiltonian systems give 
rise to a very rich variety of classical dynamical behaviour, ranging from regular to 
completely chaotic motion. The prototype of such behaviour is found in the Henon- 
Heiles (1964) system, but we wish to emphasise that, actually, most non-integrable 
Hamiltonian systems are capable of displaying similar dynamical complexity. 

It is generally agreed that the rich dynamics of Hamiltonian systems arises from 
the nonlinearity of the classical equations of motion. Quantum mechanics, on the 
other hand, is a linear theory, both in its time-dependent and time-independent forms. 
This has led many physicists to ask how the linearity of the Schrodinger equation can 
be reconciled with the observation of chaotic motion in the classical limit. We now 
understand that classical chaos does manifest itself in quantum mechanics, and can 
be associated, for example, with universal fluctuation laws governing the statistical 
properties of the energy levels. 

Due to their invariant (or basis-independent) nature, spectral properties are par- 
ticularly well suited for analysing the impact of classical chaotic motion on quantum 
mechanics. (Chaos in quantum mechanics can also be studied using the information 
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contained in eigenfunctions (see, e.g., Heller 1984, Shapiro and Goelman 1984), 
but one should bear in mind that this information is basis-dependent.) Bohigas et a1 
(1984a) first associated chaotic behaviour in classical mechanics with fluctuation 
properties of the corresponding quantum system. By extending the work of Berry 
(1981), they showed convincingly that the statistical properties of the spectrum of 
Sinai’s billiard can be described by a random-matrix model, namely the Gaussian 
orthogonal ensemble (GOE). Recently, they gave a very complete account of their 
work, including recent results for the stadium (Bohigas and Giannoni 1984, see also 
Bohigas et a1 1984b). Another elucidating review related to these topics has been given 
by Berry (1983). 

Due to conservation of energy, the classical motion of Hamiltonian systems with 
only one degree of freedom ( I D  systems) is integrable and therefore regular. Chaotic 
behaviour requires the destruction of at least one integral of motion. The simplest 
case where this can happen is given by 2~ systems and, to date, most publications on 
chaoticity in Hamiltonian systems deal with this case. We should, however, be aware 
that due to the absence of Arnold diffusion (Chirikov 1979) in 2~ systems, the phase 
space structure of such systems is essentially different from that of systems with three 
or more degrees of freedom. 

The present work is concerned with the effects on quantum mechanics of the 
transition from order to chaos in classical 2~ systems. Some preliminary results of our 
work have already been reported (Seligman et a1 1984, henceforth referred to as svz). 
We base our approach on the analysis of spectral fluctuations, using the same fluctuation 
measures as Bohigas et a1 (1984a). The behaviour which we find for strongly chaotic 
systems agrees with their results. The main emphasis of our work is on spectral 
fluctuations in the regime intermediate between classical regular and classical chaotic 
motion. In svz the conjecture was put forth that the fraction of phase space covered 
by chaotic trajectories (for brevity henceforth referred to as the ‘chaotic volume’) is 
the classical order parameter controlling the change in spectral fluctuation properties. 
The results presented in the present paper indicate that the situation is actually more 
complicated. By combining a semi-classical argument with the results that are known 
for the regular and chaotic limiting cases, Berry and Robnik (1984) have given a closed 
expression describing the distribution of nearest-neighbour spacings in the transition 
regime. This formula is expected to be valid in the extreme semi-classical limit, but 
does not quite agree with our numerical data. 

The purpose of this paper is to complete the work outlined in svz and to summarise 
the major results. In § 2, a family of Hamiltonian systems is studied numerically with 
regard to their classical dynamical behaviour. Section 3 contains our results for the 
spectral fluctuation properties of these Hamiltonians. A random-matrix model which 
reproduces the observed quantum mechanical behaviour is described in 04, and a 
discussion of our results is given in § 5 .  

2. Classical dynamical behaviour 

Numerical limitations compel us to study systems that are as simple as possible. Of 
course, these systems have to show the principal characteristics of chaos, and they 
must retain a relationship to physically meaningful models. These conditions can, e.g., 
be met by considering two interacting particles moving in one dimension under the 
influence of an external potential. The explicit form of the potentials which we have 
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studied is given by (the Hamiltonian being H = t p :+$p:+  V(x, ,  x,)) 

where i = 1 ,2 ,12  and x , ~  = x, - x2. By an appropriate choice of parameters, we can 
obtain systems that undergo a transition from integrable to strongly chaotic motion as 
the interaction strength A is increased (see table 1 for the definition of A ) .  We have 
taken a polynomial form for V because this simplifies both the classical and the 
quantum mechanical computations. The parameters ai, Pi and yi can be chosen in 
such a way that the potential resembles the lower part of realistic nuclear or molecular 
potentials. The restriction to even polynomials was made to conserve parity. In order 
to break the particle-exchange symmetry, we always take the potential VI different 
from the potential V,. 

Table 1. The parameters of the potential defined in equation (1). In the text the different 
systems are referred to by the letter in the first column. 

Potential Q l  P I  Y1 Q 2  P 2  Y2 0 1 2  P I 2  Y l 2  

A 156.3 -61.0 31.8 69.4 -12.1 2.8 -100h 25.OA 8.3A 
B 0 122.1 0 0 24.1 0 0 - 5 O A  0 
C 0 0 31.8 0 0 2.8 0 0 8.3h 
D -15.6 122.1 0 -6.9 24.1 0 0 -5OA 0 

When choosing the parameters of the classical system, we have to keep in mind 
the corresponding quantum mechanical problem. We wish to study the spectral 
statistics as a function of certain classical parameters such as the chaotic volume and 
the Kolmogorov entropy. The systems which we study must, therefore, satisfy two 
conditions. First, the classical parameters must remain approximately constant over 
a sufficiently large energy range. This constancy is needed for acquiring enough spectral 
statistics. Second, the classical parameters must be easy to vary. The first condition 
is best met by considering scale-invariant systems, i.e. systems for which solutions of 
the classical equations of motion on different energy shells are related by scale 
transformations. Scale-invariant systems result from (1) by taking the potentials Vi as 
homogeneous and of the same order (Landau and Lifshitz 1969). For systems with 
scale invariance, the chaotic volume and the Lyapunov exponent (as defined by 
Seligman et a1 1985) are energy independent. As the parameter A varies from zero 
to the value for which the two interacting particles dissociate, the chaotic volume 
typically ranges from 0 to 1.0. Systems with homogeneous potentials of fourth order 
(see table 1 )  are of special interest because of their relation to a particular limit of the 
classical Yang-Mills equations (Chang 1984). Another scale-invariant system which 
we have investigated is constructed from homogeneous potentials of sixth order. Since 
the restriction to homogeneous potentials would make for too narrow a choice, we 
have also studied a polynomial of fourth order with a weak harmonic (single particle) 
term. In a previous publication (svz) we studied a potential of sixth order with all ai, 
P I  and yi different from zero. The parameters of all aforementioned potentials are 
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listed in table 1. We note that the short-range interaction is repulsive in each case. 
The reason is that, for attractive short-range interactions, no significant amount of 
chaos was found. 

We have integrated the classical equations of motion numerically by using the 
subroutine MERSON from the CERN library. Based on this subroutine, we wrote a 
computer program that provides either a PoincarC surface of section, or the Lyapunov 
exponent, or the chaotic volume. In order to check the numerical accuracy, we use 
the condition of energy conservation. A limit of 0.1 '/o was imposed on the energy loss 
in all cases. 

The Lyapunov exponent was calculated by taking two nearby points in phase space 
and following the time evolution of their relative distance. This distance was defined 
as by Seligman et a1 (1985), and it was calculated during the process of numerical 
integration at multiples of a characteristic time of the system. Following Benettin and 
Strelcyn (1978), we handled the exponential divergence of the orbits by rescaling the 
distance whenever it had increased to 10 000 times the initial value. The fact that we 
use the scale-invariant definition of Seligman and Verbaarschot (1985b) for the 
Lyapunov exponent is important because we aim to compare different energies and 
different systems. 

The chaotic volume p was calculated using a scheme suggested by Noid (1984). 
This is a Monte Carlo method in which initial conditions are chosen at random with 
probability distribution given by the measure on the energy shell 

By using the above procedure for calculating the Lyapunov exponent A we are able, 
at least in principle, to decide whether a given initial condition belongs to a regular 
region ( A  = 0) or a chaotic region ( A  > 0). In practice, difficulties arise whenever there 
are many chaotic regions with a small Lyapunov exponent. In such cases, regular and 
chaotic orbits can only be distinguished by integrating the equations of motion for a 
prohibitively long time. For intermediate values of p we were not able to decide, in 
about 10% of all cases and within the limited computer time, whether an orbit was 
regular or chaotic. Because of the systematic error resulting from this uncertainty, we 
were satisfied with using only 100 different initial conditions in the Monte Carlo 
routine. Values of the chaotic volume for the systems listed in table 1 are given in table 
2 .  For systems A and D the value of p is given for different energies, and the error 
is quoted between brackets. 

We emphasise that the numerical value of the chaotic volume yields but an 
incomplete picture of the transition from classical regular to classical chaotic motion. 
For intermediate values of p, we generally find many different chaotic regions which 
melt together when p increases. The tendency to break up into many small chaotic 
regions for a decreasing value of p is more pronounced for the homogeneous potentials 
B and C than for systems A and D. The PoincarC surfaces of section shown in figure 
1 give an indication of the complexity of the structures encountered. 

The Kolmogorov entropy K is given by (Lichtenberg and Lieberman 1983) 

where the sum runs over the different chaotic regions with relative size pi and Lyapunov* 
exponent Ai. Clearly, we obtain it from the same Monte Carlo routine that computes 
the chaotic volume i f  we run each trajectory long enough to obtain a reliable value 
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for the corresponding Lyapunov exponent. Since only contributions to the Kolmogorov 
entropy from small Lyapunov exponents are beset with sizeable errors, the uncertainty 
in K is mainly due to the statistical error from the random choice of initial conditions. 
The error in K may therefore be somewhat smaller than the error in /L. In table 2 we 
give the values of K for the systems A, B, C and D, with the uncertainty given in brackets. 

The method used here for calculating the chaotic volume is considerably better 
than that of svz. There, only the large chaotic regions could be taken into account, 
and this proved inadequate even for potential A. Thus, two of the values obtained 
previously are wrong, and we should have 0.84 instead of 0.6, and 0.93 instead of 0.8 
for the cases given in figures 1 (6) and 1 ( c )  of svz. Also, as we can see from table 2, 
the present error bars are considerably smaller. 

Table 2. The chaotic volume g and the Kolmogorov entropy K for the potentials listed 
in table 1. For the non-scale-invariant systems A and D we have not only vaned the 
interaction strength A but also the total energy. 

Potential 

A 

B 

Energy A 

100 0.1 
150 0.1 
200 0.1 

75 0.2 
100 0.2 
150 0.2 
200 0.2 

50 0.3 
75 0.3 

100 0.3 
150 0.3 
200 0.3 

50 0.4 
75 0.4 

100 0.4 
125 0.4 
150 0.4 
175 0.4 
200 0.4 
225 0.4 

100 0.5 
150 0.5 
200 0.5 

100 1 .o 
15.0 1 .o 
200 1 .o 

+ 
0.00 (5) 
0.00 (5) 
0.00 (5) 

0.04 (2) 
0.26 (5) 
0.34 (5) 
0.15 (3) 

0.04 (2) 
0.81 (5) 
0.84 (6)  
0.92 (3) 
0.66 (4) 

0.84 (5) 
0.88 (3) 
0.90 (3) 
0.90 (3 ) 
0.96 (3) 
0.99 (1) 
0.88 (3) 
0.83 (4) 

0.98 (2)  
0.96 (2) 
0.95 (3) 

1.00 (1) 
0.95 (3) 
0.94 (3) 

K 

0.00 (5) 
0.00 ( 5 )  
0.00 (5) 

0.0005 (1) 
0.0042 (6) 
0.007 (1) 
0.0023 (6) 

0.0005 (1) 
0.027 (3) 
0.049 (3) 
0.058 (3) 
0.030 (1) 

0.044 (4) 
0.086 (8) 
0.107 (1) 
0.111 (6) 
0.105 (1) 
0.092 (6) 
0.066 (2) 
0.046 (4) 

0.151 (3) 

0.086 (3) 
0.121 (4) 

0.222 (1) 
0.189 (2) 
0.163 (3) 

30 0.01 0.25 (4) 0.009 (2) 

30 0.024 0.74(5) 0.042 (4) 
30 0.03 0.84 (4) 0.067 (4) 
30 0.04 0.95 (2) 0.108 (2) 
30 0.08 0.98 (2)  0.243 (1) 
30 0.10 1.00 (1) 0.326 (1) 

30 0.02 0.50 (5) 0.021 (2) 
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Table 2. (continued) 

Potential Energy A CL K 

C 30 
30 
30 
30 
30 
30 
30 
30 

D 20 
30 
40 

20 
30 
40 

20 
30 
40 

20 
30 
40 

20 
30 
40 

20 
30 
40 

0.0017 
0.0025 
0.0035 
0.005 
0.010 
0.015 
0.020 
0.025 

0.01 
0.01 
0.01 

0.01 5 
0.015 
0.015 

0.02 
0.02 
0.02 

0.03 
0.03 
0.03 

0.04 
0.04 
0.04 

0.05 
0.05 
0.05 

0.28 (4) 
0.63 (5) 
0.79 ( 5 )  
0.92 (3) 
0.99 (1 ) 
l.OO(1) 
1.00 (1) 
l.OO(1) 

0.50 ( 5 )  
0.53 (5) 
0.42 (5) 

0.86 (4) 
0.83 (4) 
0.77 (4) 

0.92 (3) 
0.91 (4) 
0.88 (4) 

0.99 (1) 
0.98 (2) 
0.94 (3) 

0.99 (1) 
0.99 (1) 
0.99 (1) 

l.OO(1) 
1.00 (1) 
1.00 (1) 

0.007 (2) 
0.020 (3) 
0.042 (4) 
0.75 (3) 
0.149 (3) 
0.226 (1) 
0.284 (2) 
0.353 (1) 

0.035 (4) 
0.031 (3) 
0.28 (4) 

0.078 (4) 
0.066 (4) 
0.057 (3) 

0.098 (3) 
0.072 (4) 
0.078 (3) 

0.146 (3) 
0.143 (3) 
0.127 (4) 

0.194 (2) 
0.181 (2) 
0.171 (4) 

0.246 (1) 
0.233 (1) 
0.224 (1) 

3. The spectra 

Although the qualitative study of classical dynamical behaviour does not require high 
numerical precision, in the computation of the quantum mechanical spectrum numerical 
accuracy is of prime importance. For the purpose of analysing spectral fluctuations, 
it is necessary to determine the spacings between the energy levels to within a few per 
cent of the local mean spacing. We must also be sure that the sequence of computed 
energy levels is complete, for any omission of levels would severely distort the fluctu- 
ation measures. 

The eigenvalues were calculated by evaluating the matrix of the Hamiltonian in a 
harmonic-oscillator basis, by truncating the basis, and by diagonalising the resulting 
finite matrix. The maximum matrix dimension considered was 2000. Although 
expansion in a harmonic-oscillator basis does not yield satisfactory results in general, 
for the potential defined in (1) and the parameter sets listed in table 1, good convergence 
was obtained. (These parameters were chosen so as to give convergent results.) The 
selection of parameters was made by trial and error, and it is fortunate that the 
scale-invariant systems B and C satisfy our stringent convergence conditions. 

Several independent methods were used to ascertain and check the accuracy of 
our results. First, we used the simple device of comparing the eigenvalues obtained 
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Figure 1. Poincar.5 surfaces of section ( p 2  = 0) for the Hamiltonian defined in equation (1)  
and potentials A and C. For potential C, the interaction strengths are given by ( a )  A = 0.005 
and ( b )  A = 0.01, and for potential D by ( c )  A = 0.3 and ( d )  A = 0.4. The chaotic volumes 
are 0.92, 0.99, 0.81 and 0.88 in ( a ) ,  ( b ) ,  ( c )  and ( d ) ,  respectively. 

from matrices of varying size. Second, we considered the dependence of the eigenvalues 
on the oscillator frequency of the basis functions. This method has been used before 
in the calculation of ground-state energies and we find that it can also be applied to 
highly excited states. Third, in specific cases we ran a computer program based on 
the algorithm of Neuberger and Noid (1983) to integrate the Schrodinger equation on 
a lattice, and compared the output with our results. (This program was adapted to 
the treatment of two-dimensional systems by Neuberger (1983).) Fourth, in the case 
of scale-invariant systems we used the observation that the eigenvalues of such systems 
scale with a definite power of h. The onset of significant deviations from the predicted 
behaviour was found to be in rough agreement with the stability criteria defined by 
methods one and two. AT a final test, we plotted the calculated level density as a 
function of energy and compared it with the semi-classical formula of Weyl. The latter 
was found to start deviating from our numerical results near the point where the 
eigenvalues become inaccurate. The consistency of all these convergence checks gives 
us a high level of confidence in our results. A more detailed account of the various 
methods used, in particular of the method of variation of the oscillator frequency for 
the basis functions, will be given in a separate publication (Seligman and Verbaarschot 
1986). 

Requiring an absolute accuracy of 0.10, where D is the local mean spacing, we 
typically obtain 400 to 500 reliable eigenvalues from matrices of dimension 1600. The 
following remark is important. Since it is only level spacings (and not absolute energies) 
that enter the calculation of fluctuation measures, one might be (mis)led to regard it 
as sufficient to know the relative position of the eigenvalues accurately, leading to 
weaker conditions on numerical precision (see, e.g., Noid et a1 1977). Unfortunately, 
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we find that the spectral properties change as soon as the absolute values of the 
eigenvalues fail to be accurate. This is rather unpleasant because for most potentials, 
in particular in more than two dimensions, the level density increases with energy. As 
a result, the requirements on accuracy become more stringent at higher energies, which 
is where the actual numerical accuracy decreases. It might, therefore, seem preferable 
to directly compute energy differences. However, the respective techniques suffer from 
the drawback of having a tendency to omit levels. 

Having computed the spectrum, we proceed to determine its fluctuation properties 
via a statistical analysis. The first step is to normalise the local mean spacing to unity 
by ‘unfolding’ the spectrum. This can be done by fitting the calculated level density 
p ( E )  = X i  S ( E  - E i )  with a sufficiently smooth function. All results given in the present 
paper were obtained by using 

p s m ( E )  = a + b/&+ c / E .  (4) 

(We note that the singularity at E = 0 on the RHS of (4) is of no consequence for our 
analysis because the energy of the ground state.lies typically at E > 10.) We have also 
investigated other choices for psm, for example a polynomial of seventh order in E. 
In principle, it would be preferable to use the semi-classical level density for psm 
because this eliminates any bias in the fitting function, and because the semi-classical 
level density has a clear physical interpretation. However, on finding that all the 
different forms of psm lead to statistically equivalent results (see figure 8), we felt free 
to choose (4), which is most convenient numerically. 

Using the smoothed level density (4), we define an unfolded spectrum by 

E i + l -  Ei = (Ei+* - Ei)  psm(Ei)* ( 5 )  

By construction, the level spacings of the unfolded spectrum have an average value 
of unity. Given the E ~ ,  we consider two different fluctuation measures. The first measure 
describes short-range correlations (level repulsion) and is given by the distribution of 
spacings between neighbouring levels. The second fluctuation measure is the A3 statistic 
defined by 

1 a + L  

A 3 ( a ,  L )  = min A,B - L [ a  ( n ( ~ ) - - - - & ) * d ~  (6) 

where n (  E )  denotes the number of levels in the unfolded specErum with energy smaller 
than E. The A3 statistic measures long-range correlations in the spectrum. We note 
that, although n ( E )  has a slope of unity when viewed over the entire unfolded spectrum, 
in a subinterval [a, a + L] this function will be best approximated by a straight line 
with slope different from one. A closed analytic form for expression (6) is available 
(Bohigas and Giannoni 1984), and we use this form to accelerate numerical computa- 
tion. It is convenient to perform an energy average of A3 by averaging over such values 
of a that the corresponding intervals overlap by t L  (Bohigas et a1 1984a). We follow 
Bohigas et a1 (1984a) and denote the quantity so obtained by E 3 ( L )  without the 
additional label a. 

Figure 2. Numerical results for the & statistic and the distribution of nearest-neighbour 
spacings, P ( S ) .  Dots and histograms represent the results obtained for the Hamiltonian 
( 1 )  with potential B. The lines were obtained from a random-matrix model which is defined 
in $4 .  Figures ( a ) - ( e )  correspond to interaction strengths A =O.lO, 0.04, 0.02, 0.01 and 0 
and chaotic volumes 1.00, 0.95, 0.50, 0.25 and 0, respectively. 
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Since the spectral properties of Hamiltonian systems vary, in general, with energy, 
it is necessary to check whether the fluctuation measures are stationary within the 
spectrum span considered. We check stationarity by dividing a sequence of 450 levels, 
say, into three different subsequences of 150 levels each, and by calculating the 
distribution of nearest-neighbour spacings and the & statistic for each subsequence 
separately. (A meaningful statistical analysis requires a minimum of 100 levels.) The 
fluctuation properties are said to be stationary when the different results obtained in 
this way agree within statistical errors. At this point we want to mention that for the 
non-scale-invariant potentials A and D we have chosen the value of h such that the 
classical properties of the system remain approximately constant over the part of the 
spectrum to be investigated. For the potentials A and D this amounts to a value of h 
of 0.4472 and 0.1414, respectively. For the scale-invariant systems B and C the value 
of h is irrelevant and we fix its value at 0.2. 

For reasons to be discussed later, we omit the first 50 levels of each spectrum, and 
we combine levels with even and odd parity to form one large ensemble of about 700 
to 900 levels. Figures 2, 3 and 4 show the results for the potentials By C and D. The 
interaction strength decreased from top to bottom in each of the figures. The histograms 
on the RHS give the results for the distribution of nearest-neighbour spacings, P ( S ) .  
We chose to represent these results by using a bin size of 0.1, which is consistent with 
the accuracy of the calculated energy levels. The dots on the LHS give our results for 
the A, statistic. The full lines in the top graphs ( a )  of each figure represent the GOE 

predictions for A, and P ( S )  (see 0 41, and the graphs (e) at the bottom represent the 
predictions of the Poisson ensemble. This latter ensemble is defined by assuming the 
energy levels to be distributed randomly. The full lines in the graphs labelled (b),  (c) 
and ( d )  are obtained from a random-matrix model which will be described in § 4. 

We observe that in all three cases there is a smooth transition from the GOE limit 
to a behaviour that closely resembles the Poisson limit. Poisson statistics is clearly 
attained for the distribution of nearest-neighbour spacings, and also for the A, statistic, 
at least up to L = 30. These results agree with those for the potential A given in svz. 

In the graphs (e), the most conspicuous deviation from Poisson behaviour is the 
‘kink’ in the & statistic, which fades as we approach the GOE limit. & displays a 
marked flattening at about 30 level spacings, thereby indicating that our family of 
Hamiltonians yields, in the integrable limit, long-range fluctuations that are consider- 
ably smaller than those predicted by Poisson statistics. In order to understand this 
feature, we have considered model spectra such as 

(7) E,, = a , m  + b ,m2+ a2n + b2n2. 

(Clearly, the analysis of the corresponding spectral statistics defines a problem in 
number theory.) Numerical computation of a, for the spectra (7) yields a behaviour 
(see figure 5)  quite similar to that seen in figures 2( e ) ,  3( e )  and 4( e). Furthermore, 
the ‘kink’ moves to larger values of L as the number of levels between zero and the 
lowest level of the part of the spectrum used for the calculation of A, is increased, 
which is also what we find for the numerical data given in figure 6. For the potential 
considered in svz, the ‘kink’ in A3 occurs at much smaller values of L, L s 9 .  We 
interpret this as a non-generic behaviour owing to the fact that this potential contains 

Figure 3. As figure 2 but with potential B replaced by potential C. The interaction strengths 
are given by A =0.025, 0.015, 0.010, 0.0035 and 0, and the chaotic volumes by 1.00, 1.00, 
0.99. 0.79 and 0. 
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strong harmonic terms. This interpretation is consistent with figure 5 ( b )  where we 
show for the spectrum obtained from equation (7) with a ,  = 1.0, a ,  = 1.4142, 6, = 
1.0 x and b, = 1.0 x The ‘kink’ shows up at much smaller values of L than 
in figure 5( a )  where the harmonic term is zero. The case a ,  = a ,  = 0 has been studied 
extensively by Casati et a1 (1984a, b), and their findings are in keeping with our results. 
Concerning figures 2,3 and 4 we wish to draw attention to the saw-tooth-like fluctuations 
of A3 which may occur just before the ‘kink’. This phenomenon is not an artefact of 
the unfolding procedure and could not be explained properly. 

We have mentioned earlier that the family of Hamiltonians (1) does not give rise 
to stationary ensembles, in general. The above discussion suggests that problems due 
to non-stationarity are particularly pressing in the integrable limit. There exists firm 
evidence that the distance from the ground state has a significant influence on the A3 
statistic. To illustrate this we show in figure 6 the A3 and the nearest-neighbour spacing 
distribution of the first 125 levels (figure 6 ( a ) )  and of the second 125 levels (figure 
6( b ) )  for the scale-invariant system C with A = 0.01. One sees that the ‘kink’ in A3 
moves to the right. However, the nearest-neighbour spacing distribution remains 
unaffected within statistical fluctuations. This is the reason why we always discard the 
first 50 levels from our analysis. 

Since classical dynamical behaviour and quantum level fluctuations are expected 
to parallel each other, we put states with even and odd parity into the same ensemble. 
Figure 7 shows the A, statistic separately for even and odd parity in two selected cases. 
We were surprised to find a small yet noticeable systematic difference, which actually 
increases as the integrable limit is approached. At short range, even-parity states give 
rise to a somewhat stiffer spectrum than odd-parity states do, while at long range the 
situation is reversed. We have not been able to find a satisfactory explanation of this 
phenomenon. In any case, the differences are so small that we regard their influence 
as negligible as far as our main results are concerned. 

Finally, we wish to substantiate our claim that we obtain results essentially 
equivalent to those given in figures 2, 3 and 4 when we use the semi-classical level 
density 

instead of equation (4). Results obtained from the two different forms of psm are 
compared in figure 8. 

4. A random-matrix model 

In the previous section we saw a gradual transition from the spectral statistics of the 
GOE to that of the Poisson ensemble as the chaotic volume changed from to 1.0 to 0. 
In this section we discuss in some detail a random-matrix model which was proposed 
in svz. This model reproduces the observed behaviour. It is also capable of predicting 
quantities other than the A, statistic and the distribution of nearest-neighbour spacings. 

Figure 4. Same as figure 2 but with potential B replaced by potential D. The interaction 
strengths are given by A = 0.05, 0.04, 0.03, 0.015 and 0, and the chaotic volumes by 1.00, 
0.99, 0.97, 0.82 and 0. 
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Figure 5. The A3 statistic for spectra generated from equation (7) with ( a )  a ,  = 0, b, = 1.0, 
a2 = 0 and b, = 1.4142, and with (b)  a, = 1.0, b, = 1.0 x 
The lower line corresponds to the first 150 eigenvalues, the dotted line to the second 150 
eigenvalues, and the upper line to the 301st eigenvalue u p  to the 450th eigenvalue. We 
note that the harmonic term shifts the position of the 'kink' to lower values of L. For 
eigenvalue sequences higher up in the spectrum the 'kink' moves to the right. 

a2 = 1.4142 and b, = 1.0 x 

Figure 6. The A, statistic and the nearest-neighbour spacing distribution P(S) for ( a )  the 
first 125 eigenvalues and ( b )  the second 125 eigenvalues of the potential C with strength 
A = 0.01. 

(We hope to investigate in the future quantities involving the spectral three- and 
four-point functions in order to test these predictions.) 

Let X ,  be the matrix elements of an ensemble of GOE matrices. We then define 
matrix elements Y,, by 

Y,, = X,, exp[-(li -.A/u)~I. ( 9 )  
Due to the exponential cut-off, which is characterised by the value of K,  these matrix 
elements effectively describe an ensemble of 'banded' matrices, with effective band 
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Figure 7. Comparison between levels with even parity (dots) and levels with odd panty 
(lines) of the & statistic and the distribution of nearest-neighbour spacings, P(S). These 
results were obtained from the Hamiltonian (1) with potential C and interaction strengths 
( a )  A = 0.03 and (6) A = 0.08. 
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Figure 8. Comparison of the spectral statistics obtained by unfolding the calculated level 
density in two different ways. The full lines represent the results obtained by using the 
semi-classical level density, and the dots were obtained by making a x 2  fit using the prm 
defined in equation (4). These results correspond to the Hamiltonian ( 1 )  with potential B 
and interaction strength A = O M .  In ( a ) ,  we show the & statistic, and in (6) the nearest- 
neighbour spacing distribution, P ( S ) .  

width U. In svz the value K = 2 was used. Actually, the dependence on K is very weak 
for values of K P 2. The A3 and the nearest-neighbour spacing distribution for K = 2 
and K = 4  coincide. We arrived at this conclusion by comparing results obtained by 
averaging over an ensemble of 250 160x160 matrices for different values of U. The 
curves for K = 1 and K = 2 are not identical, but by adjusting the value of U we can 
obtain practically the same result. This is shown in figure 9 where we give the S3 
statistic for K = 1 and U = 4 (dots), and for K = 2 and U = 6 (line). These results were 
also obtained from an ensemble of 250 matrices of dimension 160. When U differs 
from 0 and CO, the results for A3 and the nearest-neighbour spacing distribution depend 
on the dimensionality N of the matrices. This dependence, too, can be simulated by 
changing U in an appropriate way. For definiteness we will always take N = 160. Of 
course, the argument L of A3(L)  has to be well below N. 

Our random-matrix model thus reduces to a single-parameter family, and this is 
desirable as our numerical results indicate that the spectral statistics depends only on 
one parameter. 
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Figure 9. The A, statistic for the eigenvalues of the model defined in 5 4 and different 
values of K. The statistic for K = 1 and U = 4 (dots) is compared with the & statistic for 
K = 2 and U = 6 (full line). 

We now proceed to adjust the value of U to the data which we have available. The 
curves in figures 2, 3 and 4 are obtained from an ensemble of 250 matrices with the 
value of U fitted to the results for &. When the system showed an excessive stiffness 
at long range, as is for example the case in figure 4(c), we restricted the fit to the 
points below the ‘kink’. The curves for the nearest-neighbour spacing distribution 
were calculated from the same value of U without further adjustment. All these curves 
were obtained numerically by taking not only the ensemble average but also an energy 
average to improve the statistics. In order to further reduce the statistical errors, we 
smoothed the random-matrix results for & ( L )  as a function of L. For the nearest- 
neighbour spacifig distributions of the random-matrix model, the additional smoothing 
was applied to the data points defined by a histogram with bin size 0.1. (Note that 
this is the same bin size as was used in D 3.) The resulting points are interpolated by 
a smooth curve. The curves’ for the nearest-neighbour spacing distribution obtained 
in this way are not exact, but they represent a good approximation. By taking a 
resolution finer than 0.1, one finds that the spacing distribution always goes to zero at 
the origin (except for the Poisson limit). This feature, which is also present in the 
nearest-neighbour spacing distributions of figures 2, 3 and 4, cannot be explained by 
the semi-classical arguments of Berry and Robnik (1984). We consider this as a 
confirmation of the strength of our model. 

Up to the ‘kink’ in &, the model is always in very good agreement with our data. 
The nearest-neighbour spacing distribution is reproduced completely within statistical 
fluctuations. To say it again, the results of our random-matrix model depend on one 
parameter only. The success of the model can therefore be taken as evidence confirming 
the conclusion drawn in 0 3, namely that the transition from GOE to Poisson behaviour 
is universal in the energy range considered in this paper. 

5. Discussion 

Based on preliminary studies (svz) of a one-parameter family of Hamiltonians, we 
proposed that the chaotic volume may be the classical order parameter governing the 
transition of spectral fluctuation properties in quantum mechanics. Using the results 
given in the present paper, we are now able to put this proposition to a test. We have 
seen that our quantum mechanical results can be described essentially by one parameter, 



Spectral fluctuations in between order and chaos 2767 

and we may choose it model independently as i 3 ( 2 )  - i3( 1). (For obvious reasons we 
propose to give this quantity the following name: ‘spectral order parameter’.) Plotting 
the spectral order parameter against the chaotic volume for all four potentials and 
varying interaction strength, we do not find the same behaviour in all cases (see figure 
10: for the potentials A and D we have averaged the chaotic volume p over the energy 
interval covered by the eigenvalues used for the calculation of the A3). To be sure, 
the gross behaviour is independent of the system, but the detailed functional form 
does depend on it. The differences are significant because the functions shown in 
figure 10 have regions of very large and very small derivatives, amounting to a large 
sensitivity. The general trdnd, and the monotonicity of the function for each system, 
shows that the chaotic volume does play an important role. However, the functional 
dependence of the spectral fluctuation measures on this parameter is not universal. 
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Figure 10. The chaotic volume against the spectral order parameter &(2) -&(1)  for the 
Hamiltonian ( 1 )  and the various potentials given in table 1.  The results for potentials A 
through D are represented by A, x, 0 and + symbols, in this order. 

It is worth mentioning, here, that the Kolmogorov entropy has also been proposed 
as a relevant parameter for the present problem (Zaslavsky 1981). This proposition is 
largely refuted by our numerical data. Strongly chaotic systems are in general charac- 
terised by different values of the Kolmogorov entropy, but the corresponding spectral 
fluctuation measures which we obtain are universally given by the GOE. Hence, if the 
Kolmogorov entropy has any influence at all, then this influence must disappear in 
the strongly chaotic limit. 

We resume the discussion of figure 10 and recall that both the distribution of 
nearest-neighbour spacings and the short-range part of the z3 statistic are well described 
by a one-parameter family of curves. As is seen from figure 10, a given member of 
this family does not, in general, correspond to a unique value of the chaotic volume. 
This non-uniqueness (or non-universality) arises from diff erences in the classical dynami- 
cal behaviour that are not contained in the value of p. At the end of P 2, we saw that, 
as the interaction strength and, consequently, the chaotic volume is reduced, the chaotic 
region breaks up into many disjoint pieces. This breakup occurs in a different way 
for each potential. Consider values of the chaotic volume between 0.9 and 1.0, where 
the biggest change in spectral statistics occurs. Our results show that the ‘disintegration’ 
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of the chaotic region has the effect of reducing the quantum mechanical consequences 
of chaos. In other words, for a fixed value of the chaotic volume, we find that the 
spectral statistics is closer to Poisson (or further away from GOE) when phase space 
contains many small instead of one large chaotic region. 

This observation is consistent with the general line of reasoning used by Berry and 
Robnik (1984) in their derivation of a closed formula for the nearest-neighbour spacing 
distribution in the semi-classical limit. There exists, however, a clear difference between 
this formula and our numerical results. We find that the disintegration of phase space 
into many small chaotic regions simulates a decrease in chaotic volume, that is to say, 
it simply shifts the peak of the distribution closer to the origin without generating a 
new shape. Berry and Robnik predict also a change in shape. This difference does 
not imply a contradiction as the formula of Berry and Robnik (1984) is supposed to 
be valid only in the semi-classical limit. (A more detailed comparison between their 
formula and its extension to the A, statistic and our numerical results will be given 
elsewhere by Seligman and Verbaarschot (1985a.) We conclude that effects of quantal 
diffusion are important and that the main assumption made by Berry and Robnik 
(1984), namely that wavefunctions are localised either in a particular regular or in a 
particular chaotic region of phase space, is not completely valid in the energy range 
which we consider. 

In summary, two major results have emerged from our work. First, we have seen 
that for the class of Hamiltonians ( l) ,  the spectral fluctuation properties at low energy 
exhibit a unique (or ‘universal’) transition behaviour from GOE to Poisson-like statistics. 
This transition parallels the transition from chaotic to regular motion in the correspond- 
ing classical system. The classical dynamical behaviour has a richer structure which 
appears, however, to be washed out by quantum fluctuations. The quantum mechanical 
behaviour can be described by a one-parameter random-matrix model, with an addi- 
tional stiffness imposed at long range in the spectrum. This stiffness manifests itself 
as a ‘kink’ in A3 which gradually fades as we approach the GOE limit. We believe it 
to be a general property of integrable systems with two (or few) degrees of freedom. 

Second, our results provide a further link in a chain of arguments, mainly numerical 
in nature, which aim to establish that spectral statistics provides a key to the understand- 
ing of chaos in quantum mechanics, and that random-matrix models are the mould in 
which this key is formed. The chain of arguments begins with the paper of Berry and 
Tabor (1977) who proposed a Poisson distribution for the nearest-neighbour spacings 
of generic integrable systems. Berry (1981) later suggested a Wigner distribution (GOE) 

for the spacings of strongly chaotic (K)systems. Bohigas er a1 (1984b) showed the 
latter conjecture to be true for two types of billiard, namely Sinai’s billiard and the 
stadium. Two of us (Seligman and Verbaarschot 1985b) have supplemented potentials 
of the type D with a magnetic field of intermediate strength to obtain spectral fluctuation 
measures that correspond to the Gaussian unitary ensemble (GUE). Finally, svz and 
the present paper constitute an attempt to fill in the gap between the integrable and 
completely chaotic limits. 

An important further step will be the analysis of systems with three degrees of 
freedom. Arnold diffusion is expected to modify the classical picture drastically, there, 
and it will be interesting to see to what extent this induces changes in quantum 
mechanics. In particular, the role of the chaotic volume will have to be reconsidered, 
and also the anomalies in the integrable case should disappear with an increasing 
number of degrees of freedom. Unfortunately, the numerical effort will grow consider- 
ably, as was explained in P 3. 
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Finally, we wish to comment on a recent paper by Casati et a1 (1984a) who 
considered the square well in two dimensions. Their results for the & statistic are 
very similar to those which we obtain in the integrable case, including the excessive 
long-range stiff ness as expressed by the ‘kink’. In addition, for the nearest-neighbour 
spacings they find that fluctuations about the Poisson distribution do not decrease with 
an increasing number of levels. This finding casts some doubt on the justification of 
any statistical analysis in this case. Yet, as the authors admit, the square well is a very 
special system. Anomalies for the harmonic oscillator are well known (Berry and 
Tabor 1977), and there is no reason to expect that the square well is any nearer to 
the generic case, A more extensive study of our systems might provide some insight. 
Since our systems are separable in the integrable limit, we would have to compute the 
spectra for the two one-dimensional systems separately, and then construct the spectrum 
of the total system by superposition. 
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Note added in pro06 In a beautiful argument Berry (1985) explains the connection between the A, statistic 
and the properties of the periodic classical trajectories. Among others this enabled him to explain the ‘kink’ 
in the A, statistic and the asymptotic logarithmic dependence of L of A,( L )  for completely chaotic systems. 
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